Abstract

A bipartite graph G=(L,R;E) with at least one edge is said to be identifiable if for every vertex v∈L, the subgraph induced by its non-neighbors has a matching of cardinality |L|−1. This definition arises in the context of low-rank matrix factorization and is motivated by signal processing applications.In this paper, we study the resilience of identifiability with respect to edge additions, edge deletions and edge modifications. These can all be seen as measures of evaluating how strongly a bipartite graph possesses the identifiability property. On the one hand, we show that computing the resilience of this non-monotone property can be done in polynomial time for edge additions or edge modifications. On the other hand, for edge deletions this is an NP-complete problem. Our polynomial results are based on polynomial algorithms for computing the surplus of a bipartite graph G and finding a tight set in G, which might be of independent interest.We also deal with some complexity results for the optimization problem related to the isolation of a smallest set J⊆L that, together with all vertices with neighbors only in J, induces an identifiable subgraph. We obtain an APX-hardness result for the problem and identify some polynomially solvable cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.