Abstract
Three residues (E132, F127, and R128) at the outer mouth of Kir1.1b directly affected inward rectifier gating by external K, independent of pH gating. Each of the individual mutations E132Q, F127V, F127D, and R128Y changed the normal K dependence of macroscopic conductance from hyperbolic (Km = 6 ± 2 mM) to linear, up to 500 mM, without changing the hyperbolic K dependence of single-channel conductance. This suggests that E132, F127, and R128 are responsible for maximal Kir1.1b activation by external K. In addition, these same residues were also essential for recovery of Kir1.1b activity after complete removal of external K by 18-Crown-6 polyether. In contrast, charge-altering mutations at neighboring residues (E92A, E104A, D97V, or Q133E) near the outer mouth of the channel did not affect Kir1.1b recovery after chelation of external K. The collective role of E132, R128, and F127 in preventing Kir1.1b inactivation by either cytoplasmic acidification or external K removal implies that pH inactivation and the external K sensor share a common mechanism, whereby E132, R128, and F127 stabilize the Kir1.1b selectivity filter gate in an open conformation, allowing rapid recovery of channel activity after a period of external K depletion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.