Abstract

Hepatitis B virus (HBV) X protein (HBx) has been reported to counteract the innate immune responses through interfering with the pattern recognition receptors signaling activated by retinoic acid-inducible gene-I (RIG-I)-mitochondrial antiviral signaling protein (MAVS). Here, we showed that, compared to the HBx derived from genotype (gt) A, C and D, HBx of gtB exhibited more potent inhibitory activity on the RIG-I-MAVS-mediated interferon-β promoter activation. Functional analysis of the genotype-associated differences in amino acid sequence and the reciprocal mutation experiments in transient-transfection and infection cell models revealed that HBx with asparagine (N) and glutamic acid (E) at 118–119 positions inhibited RIG-I signaling and interacted with MAVS more efficiently than that with lysine (K) and aspartic acid (D). An impaired RIG-I-induced MAVS aggregation was observed in the presence of HBx-118N119E while MAVS-TRAF3 interaction was not affected. These results implicated that HBx gene heterogeneity may affect the innate immune responses to HBV infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.