Abstract

We introduce a new approach to the study of a system of algebraic equations in whose Newton polytopes have sufficiently general relative positions. Our method is based on the theory of Parshin's residues and tame symbols on toroidal varieties. It provides a uniform algebraic explanation of the recent result of Khovanskii on the product of the roots of such systems and the Gel'fond–Khovanskii result on the sum of the values of a Laurent polynomial over the roots of such systems, and extends them to the case of an algebraically closed field of arbitrary characteristic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.