Abstract

Thermostable Newcastle disease virus (NDV) vaccines have been widely used in areas where a “cold-chain” is not reliable. However, the molecular mechanism of NDV thermostability remains poorly understood. In this work, we constructed chimeric viruses by exchanging viral fusion (F) and/or hemagglutinin-neuraminidase (HN) genes between the heat-resistant strain HR09 and thermolabile strain La Sota utilizing a reverse genetic system. The results showed that only chimeras with HN derived from the thermostable virus exhibited a thermostable phenotype at 56°C. The hemagglutinin (HA) and neuraminidase (NA) activities of chimeras with HN derived from the HR09 strain were more thermostable than those containing HN from the La Sota strain. Then, we used molecular dynamics simulation at different temperatures (310 K and 330 K) to measure the HN protein of the La Sota strain. The conformation of an amino acid region (residues 315–375) was observed to fluctuate. Sequence alignment of the HN protein revealed that residues 315, 329, and 369 in the La Sota strain and thermostable strains differed. Whether the three amino acid substitutions affected viral thermostability was investigated. Three mutant viruses based on the thermolabile strain were generated by substituting one, two or three amino acids at positions 315, 369, and 329 in the HN protein. In comparison with the parental virus, the mutant viruses containing mutations S315P and I369V possessed higher thermostablity and HA titers, NA and fusion activities. Taken together, these data indicate that the HN gene of NDV is a major determinant of thermostability, and residues 315 and 369 have important effects on viral thermostability.

Highlights

  • Newcastle disease virus (NDV) is a highly contagious and important cause of loss in the poultry industry (Sinkovics and Horvath, 2000; Miller et al, 2010)

  • There were no significant differences in virus titers among these chimeras in SPF chicken embryos, and the EID50/0.1 mL values of chimeric viruses except cLa-HR-F were almost more than 8.0 log10

  • The results showed that replacement of the hemagglutinin-neuraminidase protein (HN) gene in the thermolabile strain La Sota with the HN gene from the heat-resistant strain HR09 resulted in significantly enhanced thermostability (Figure 3)

Read more

Summary

Introduction

Newcastle disease virus (NDV) is a highly contagious and important cause of loss in the poultry industry (Sinkovics and Horvath, 2000; Miller et al, 2010). It is a member of the avian paramyxoviruses (APMV) and an enveloped virus that contains a single stranded, negative sense RNA genome. The NDV genome contains six genes encoding the nucleoprotein (NP), phosphoprotein (P), matrix protein (M), fusion protein (F), hemagglutinin-neuraminidase protein (HN) and large RNA polymerase (L) (Dimitrov et al, 2019). HN is responsible for activating the F protein, which mediates the fusion of the viral envelope with the host cell membrane (Mirza and Iorio, 2013). HN is a multifunctional molecule that contains a receptor binding site for sialic acid and has neuraminidase (NA) activity to hydrolyze sialic acid from progeny virions to prevent viral self-aggregation (Porotto et al, 2006)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call