Abstract
Recently, we developed a residue-specific force field (RSFF1) based on conformational free-energy distributions of the 20 amino acid residues from a protein coil library. Most parameters in RSFF1 were adopted from the OPLS-AA/L force field, but some van der Waals and torsional parameters that effectively affect local conformational preferences were introduced specifically for individual residues to fit the coil library distributions. Here a similar strategy has been applied to modify the Amber ff99SB force field, and a new force field named RSFF2 is developed. It can successfully fold α-helical structures such as polyalanine peptides, Trp-cage miniprotein, and villin headpiece subdomain and β-sheet structures such as Trpzip-2, GB1 β-hairpins, and the WW domain, simultaneously. The properties of various popular force fields in balancing between α-helix and β-sheet are analyzed based on their descriptions of local conformational features of various residues, and the analysis reveals the importance of accurate local free-energy distributions. Unlike the RSFF1, which overestimates the stability of both α-helix and β-sheet, RSFF2 gives melting curves of α-helical peptides and Trp-cage in good agreement with experimental data. Fitting to the two-state model, RSFF2 gives folding enthalpies and entropies in reasonably good agreement with available experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.