Abstract

A tyrosine (Tyr)- or tryptophan (Trp)-selective metal-free C-H sulfenylation reaction using an acid-activated S-acetamidomethyl cysteine (Cys) sulfoxide, Cys(Acm)(O), has been achieved. The dually protonated intermediate produced from the Cys(Acm)(O) under acidic conditions allows the sulfenylation of Tyr. Significantly, the reaction in the presence of trimethylsilyl trifluoromethanesulfonate (TMSOTf) mainly affords a Cys-Tyr-linked peptide even in the presence of Trp residues. In contrast, a Cys-Trp-linked peptide was selectively obtained from the reaction in the presence of guanidine hydrochloride (Gn·HCl) under acidic conditions. Established Tyr- and Trp-selective sulfenylation methods were used in the Cys-Tyr stapling and Trp-lipidation of glucagon-like peptides in a one-pot/stepwise manner. Investigation of the mechanism showed that orbital- and charge-controlled reactions are responsible for the Trp and Tyr selectivity, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.