Abstract

Proteins are intrinsically dynamic molecules and undergo exchanges among multiple conformations to perform biological functions. The CPMG relaxation dispersion and CEST experiments are two important solution NMR techniques for characterizing the conformational exchange processes on the millisecond timescale. Traditional pseudo 3D 15N CEST and CPMG experiments have certain limitations in their applications. For example, both experiments have low sensitivity for broadened resonances, and the process of optimizing sample conditions and experimental parameters are often time consuming. To overcome these limitations, we herein present a new set of residue selective 15N CEST and CPMG pulse sequences by employing the Hartmann-Hahn cross-polarization transfer of magnetization in both 1D and 2D schemes. Combined with frequency labeling in the indirect dimension using only a small number of increments, the pulse sequences in the 2D scheme can be applied on resonances in overlapped regions of the 1H-15N HSQC spectrum. The pulse sequences were further applied on several proteins, demonstrating their advantages over the traditional CEST and CPMG experiments under specific circumstances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call