Abstract
This paper develops the residue harmonic balance solution procedure to predict the bifurcated periodic solutions of some autonomous delay differential systems at and after Hopf bifurcation. In this solution procedure, the zeroth-order solution employs just one Fourier term. The unbalanced residues due to Fourier truncation are considered by solving linear equation iteratively to improve the accuracy. The number of Fourier terms is increased automatically. The well-known sunflower equation and van der Pol equation with unit delay are given as numerical examples. Their solutions are verified for a wide range of system parameters. Comparison with those available shows that the residue harmonic balance method is effective to solve the autonomous delay differential equations. Moreover, the present method works not only in determining the amplitude but also the frequency at bifurcation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.