Abstract
Point mutations H274Y and N294S can lead to resistance of influenza virus strains to some drug molecules. Recently, a large number of experiments has focused on the many frameworks and catalytic residues thought to prevent the efficacy of anti-flu drugs. In the past, most research has considered the role of drugs in rigid proteins rather than in flexible proteins. In this study, we used molecular dynamics simulation (MD) combined with structure- and ligand-based drug design (SBDD and LBDD) methods to study dynamic interaction and protein dynamics correlation statistics between compounds and both the framework and catalytic residues in influenza virus N1 strains. Drug candidates were screened using the IC50 of the docking result predicted by support vector machine, multiple linear regression, and genetic function approximation (P < 0.001). As shown by MD, saussureamine C and diiodotyrosine have a protein dynamics correlation similar to that of sialic acid, and both can participate in hydrogen bond formation with loop, framework, and catalytic residues. Our in silico findings suggest that saussureamine C can inhibit H274Y and N294S mutants, and that diiodotyrosine can also inhibit N294S mutants. Therefore, the drugs saussureamine C and diiodotyrosine have the potential to produce inhibitory effects on wild-type influenza virus and some N1 mutants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.