Abstract
We introduce the concept of a quasiresiduated lattice and prove that every lattice effect algebra can be organized into a commutative quasiresiduated lattice with divisibility. Also conversely, every such lattice can be converted into a lattice effect algebra and every lattice effect algebra can be reconstructed from its assigned quasiresiduated lattice. We apply this method also for lattice pseudoeffect algebras introduced by Dvurečenskij and Vetterlein. We show that every good lattice pseudoeffect algebra can be organized into a (possibly non-commutative) quasiresiduated lattice with divisibility and conversely, every such lattice can be converted into a lattice pseudoeffect algebra. Moreover, also a good lattice pseudoeffect algebra can be reconstructed from the assigned quasiresiduated lattice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Fuzzy Sets and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.