Abstract

SummaryThe inspection of residuals is a fundamental step for investigating the quality of adjustment of a parametric model to data. For spatial point processes, the concept of residuals has been recently proposed as an empirical counterpart of the Campbell equilibrium equation for marked Gibbs point processes. The paper focuses on stationary marked Gibbs point processes and deals with asymptotic properties of residuals for such processes. In particular, the consistency and the asymptotic normality are obtained for a wide class of residuals including the classical residuals (raw, inverse and Pearson). On the basis of these asymptotic results, we define goodness-of-fit tests with type I error theoretically controlled. One of these tests constitutes an extension of the quadrat counting test that is widely used to test the null hypothesis of a homogeneous Poisson point process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.