Abstract

Here I show that a commonly used procedure to address problems stemming from collinearity and multicollinearity among independent variables in regression analysis, “residualization”, leads to biased coefficient and standard error estimates and does not address the fundamental problem of collinearity, which is a lack of information. I demonstrate this using visual representations of collinearity, hypothetical experimental designs, and analyses of both artificial and real world data. I conclude by noting the importance of examining methodological practices to ensure that their validity can be established based on rational criteria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.