Abstract

With so many thyroid knobs (nodules) discovered by accident, it is critical to recognize as many aberrant knobs (nodules) as possible from fine-needle aspiration (FNA) biopsies or other medical procedures while excluding those that are virtually certainly benign. Thyroid ultrasonography, on the other hand, is prone to interobserver variability and subjective translations. An effective deep learning model for segmenting and categorizing thyroid nodules in this study follows the stages below: data collection from a well-known archive, The Thyroid Digital Image Database (TDID), which comprises ultrasound pictures from 298 patients, preprocessing using anisotropic diffusion filter (ADF) for removing noise and enhancing the images, segmentation using a bilateral filter for segmenting images, feature extraction using grey level occurrence matrix (GLCM), feature selection using Multi-objective Particle Swarm with Random Forest Optimization (MbPSRA) and finally classification happens were Residual U-Net will be used. Experiment evaluation states the proposed model outperforms well than other state-of-art models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.