Abstract
AbstractTidal straining is known to have an important impact on the generation of residual currents and the transport of suspended material in estuaries and the coastal ocean. Essential for this process is an externally imposed horizontal density gradient, typically resulting from either freshwater runoff or differential heating. Here, it is shown that near sloping topography, tidal straining may effectively transport suspended material across isobaths even if freshwater runoff and differential heating do not play a significant role. A combined theoretical and idealized modeling approach is used to illustrate the basic mechanisms and implications of this new process. The main finding of this study is that, for a wide range of conditions, suspended material is transported upslope by a pumping mechanism that is in many respects similar to classical tidal pumping. Downslope transport may also occur, however, only for the special cases of slowly sinking material in the vicinity of slopes with a slope angle larger than a critical threshold. The effective residual velocity at which suspended material is transported across isobaths is a significant fraction of the tidal velocity amplitude (up to 40% in some cases), suggesting that suspended material may be transported over large distances during a single tidal cycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.