Abstract

AbstractNonisothermal flow of a polymer melt in a cold mold cavity introduces stresses that are partly frozen‐in during solidification. Flow‐induced stresses cause anisotropy of mechanical, thermal, and optical properties, while the residual thermal stresses induce warpage and stress‐cracking. In this study, the influence of the holding stage on the residual thermal stress distribution is investigated. Calculations with a linear viscoelastic constitutive law are compared with experimental results obtained with the layer removal method for specimens of polystyrene (PS) and acrylonitrile butadiene‐styrene (ABS). In contrast to slabs cooled at ambient pressures, which show the well‐known tensile stresses in the core and compressive stresses at the surfaces, during the holding stage in injection molding, when extra molten polymer is added to the mold to compensate for the shrinkage, tensile stresses may develop at the surface, induced by the pressure during solidification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.