Abstract

Abstract The truncated Painlevé method is developed to obtain the nonlocal residual symmetry and the Bäcklund transformation for the (2+1)-dimensional KdV–mKdV equation. The residual symmetry is localised after embedding the (2+1)-dimensional KdV–mKdV equation to an enlarged one. The symmetry group transformation of the enlarged system is computed. Furthermore, the (2+1)-dimensional KdV–mKdV equation is proved to be consistent Riccati expansion (CRE) solvable. The soliton–cnoidal wave interaction solution in terms of the Jacobi elliptic functions and the third type of incomplete elliptic integral is obtained by using the consistent tanh expansion (CTE) method, which is a special form of CRE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.