Abstract
Image demosaicing is problem of interpolating full-resolution color images from raw sensor (color filter array) data. During last decade, deep neural networks have been widely used in image restoration, and in particular, in demosaicing, attaining significant performance improvement. In recent years, vision transformers have been designed and successfully used in various computer vision applications. One of the recent methods of image restoration based on a Swin Transformer (ST), SwinIR, demonstrates state-of-the-art performance with a smaller number of parameters than neural network-based methods. Inspired by the success of SwinIR, we propose in this paper a novel Swin Transformer-based network for image demosaicing, called RSTCANet. To extract image features, RSTCANet stacks several residual Swin Transformer Channel Attention blocks (RSTCAB), introducing the channel attention for each two successive ST blocks. Extensive experiments demonstrate that RSTCANet outperforms state-of-the-art image demosaicing methods, and has a smaller number of parameters. The source code is available at https://github.com/xingwz/RSTCANet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.