Abstract

This work seeks to characterize the residual stresses of titanium thin films as they are affected by various substrate temperatures during the sputtering process. The titanium thin films are deposited on silicon wafers by a RF magnetron sputter while different substrate temperatures are considered. The residual stresses are measured by both X-ray diffraction and a substrate curvature method, and consistent results are obtained by both methods. The results show that the residual stress decreases as the substrate temperature increases, in which the stress changes from tensile to compressive when the substrate temperature increases from 25 to 50 degrees C. Furthermore, the elastic modulus and hardness of the titanium thin films are tested with a nanoindenter using a standard Berkovich probe. Correlations between the residual stresses and mechanical properties measured by nanoindentation are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call