Abstract

Special processing, viz ultrasonic vibration-assisted laser sintering of diamonds was studied. This process would eliminate the drawbacks pertaining to existing super-hard grinding wheels. The composite process fully utilized the odds of laser sintering and ultrasonic vibration to homogenize the structure and reduce residual stresses. Diamond particles were added to a 45 steel matrix using a Ni–Cr alloy via ultrasonic vibration-assisted laser sintering in argon. Metallographic microscopy, and were used to examine the microstructure of a Ni–Cr alloy and abrasive diamond particle bonding interface microstructure, Raman spectrometry was applied to evaluate residual stresses. Acoustic flow and cavitation effects generated by ultrasonic vibration refine crystal grains in the cladding layer and the microstructure is more homogeneous than the microstructure without ultrasonic treatment. A Cr3C2 layer formed on the surface of abrasive diamond particles enhances the bonding ability of a Ni–Cr alloy to diamond, which ensures the diamond isolation and protection, ultrasonic vibration reduces residual stresses inside abrasive diamond particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.