Abstract

The characterization of stress and deformation fields that incorporate moving cyclic loads and nonlinear material response in ultra-high molecular weight polyethylene components for total knee replacements is required to quantify mechanisms of surface damage. A simulation of stresses in polyethylene components for total knee replacement subjected to cyclic moving loads was performed with use of nonlinear finite element analysis. Convergence to a steady-state cycle of stress and deformation was observed within five cycles of loading. Differential plastic deformation under the surface of the polyethylene led to horizontal residual stresses that were tensile at the surface and compressive in the subsurface. The magnitudes of the residual stresses indicate their importance in surface failure mechanisms. Horizontal residual tensile stresses at the surface are consistent with the initiation and propagation of surface cracks that could cause pitting in polyethylene. Horizontal residual compressive stresses under the surface could cause such cracks to arrest or turn and thus limit damage to a region just beneath the surface. The results emphasize the importance of incorporating nonlinear effects to simulate long-term stress fields associated with surface damage in polyethylene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.