Abstract
AbstractResidual stresses induced by machining operations can be critical for the performance and lifetime of the machined components. This paper investigated the influence of cutting conditions, including the use of cutting fluid, cutting speed and tool flank wear, on the residual stresses in high speed turning of Inconel 718 alloy. X-ray diffraction measurements revealed characteristic residual stress distributions with tensile stresses in a thin surface layer and compressive stresses in a much thicker subsurface layer in all investigated samples. However, the magnitude of the surface tensile stresses and subsurface compressive stresses as well as the size of the tension and compression zone depended on the cutting parameters. Surface tensile residual stresses over 1600 MPa and 1400 MPa were induced by tool flank wear and increased cutting speed, respectively, in dry turning. The effect of cutting induced local plasticity and temperature increase on the observed residual stress distributions was analyzed based on microstructural study by electron channeling contrast imaging and electron backscatter diffraction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.