Abstract

The history dependence of glasses formed from flow-melted steady states by a sudden cessation of the shear rate γ[over ˙] is studied in colloidal suspensions, by molecular dynamics simulations and by mode-coupling theory. In an ideal glass, stresses relax only partially, leaving behind a finite persistent residual stress. For intermediate times, relaxation curves scale as a function of γ[over ˙]t, even though no flow is present. The macroscopic stress evolution is connected to a length scale of residual liquefaction displayed by microscopic mean-squared displacements. The theory describes this history dependence of glasses sharing the same thermodynamic state variables but differing static properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call