Abstract

Residual stresses can play a key role in the SCC performance of susceptible materials in PWR primary water applications. Residual stresses are stresses stored within the metal that develop during deformation and persist in the absence of external forces or temperature gradients. Sources of residual stresses in pipe fittings include fabrication processes, installation and welding. There are a number of methods to characterize the magnitude and orientation of residual stresses. These include numerical analysis, chemical cracking tests, and measurement (e.g., X-ray diffraction, neutron diffraction, strain gage/hole drilling, strain gage/trepanning, strain gage/section and layer removal, and acoustics). This paper presents 400 C steam SCC test results demonstrating that residual stresses in as-fabricated Alloy 600 pipe fittings are sufficient to induce SCC. Residual stresses present in as-fabricated pipe fittings are characterized by chemical cracking tests (stainless steel fittings tested in boiling magnesium chloride solution) and by the sectioning and layer removal (SLR) technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.