Abstract
Based on SLM parameters from previous works, which guarantee fully dense and crack free CM247LC samples, multi laser beam strategies have been pursued to reduce residual stresses or rather distortion during LPBF processing. By using a second post heating and non-melting laser source with a defocused laser beam and lateral offset, cantilever distortion is reduced more than 7.5%, compared to the reference. Based on pre-tests with 9 different offset parameters, the optimum offset has been identified. Also, an upper limit for the laser power of 65 W is identified for the second heat laser beam with a spot diameter of 380 μm, to avoid re-melting and creating new defects. A theoretical “two bar model,” to explain the residual stress behavior and reduction with multi laser beam offset strategy during the LPBF process, is presented. Furthermore, re-melting cracks, defects, and microstructure are analyzed in conjunction with the second defocused offset laser, in case of a 200 W laser power, an increased scan speed of 1300 mms/s, and a reduced hatch distance. Secondary electron signal (SE) images of re-melting cracks are analyzed and compared to SE-image of hot cracks (solidification cracks). Based on electron backscatter diffraction (EBSD), the results of the microstructure from the last mentioned multi laser beam approach, which creates re-melting cracks, are presented and analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.