Abstract

Residual stress has a three-dimensional scale effect (length, depth, and width) in the process of repair welding, which has a detrimental impact on the service of the aluminum alloy welded structures in high-speed trains. This paper aims to systematically analyze the effects of the repair welding dimension on the residual stress redistribution and obtain the optimal repair welding principles. A combination of blind-hole drilling method and stress linearization in BS7910 was adopted to investigate residual stress redistribution under various repair welding dimensions. The results indicate that repair welding dimension was in accordance with the principle of “SNL (shallow, narrow and long)” and the optimal repair length, depth, and width of butt joints in this study were 15t, 0.25t, and t, respectively (t is the plate thickness of butt joints).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.