Abstract

Residual stress profiles have been measured in the ferrite and cementite phases of a cold-drawn eutectoid steel rod by neutron and synchrotron X-ray diffraction in three orientations (axial, radial and hoop). Neutron diffraction was employed to measure the ferrite stresses, whereas synchrotron radiation was used for ferrite and cementite stresses. Experimental results in the ferrite phase showed excellent agreement between both experimental techniques when gauge volume effects were accounted for. Axial cementite stresses were always tensile, with a maximum value close to 1700 MPa at the rod surface. Radial and hoop cementite stresses were compressive along the diameter of the rod, with a minimum of −1900 MPa at the rod center. A 3D-finite element simulation of the macro residual stresses resulting from cold-drawing showed remarkable agreement with those determined from the experimental measurements in the ferrite and cementite phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.