Abstract

As a sort of large-scaled structural components in modern aircraft, aluminum part has been widely used nowadays. Its residual stress measurement and prediction are necessary to reduce machining deformation and keep machining precision. By Adaptive Neuro-Fuzzy Inference System (ANFIS), residual stress prediction model is set up based on different cutting parameters. Due to data sample scarcity, input selection and regression are analyzed comparatively to reduce input data dimension. It shows that cutting speed and feed per tooth have major impacts on residual stress, but they do not have better prediction ability in ANFIS model. The combination of cutting speed and radial depth of cut can predict the residual stress better.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.