Abstract

X-ray diffraction and hole-drilling methods are applied to measure the residual stresses in a turbo charge compress wheel made of aluminum wrought alloys for finite element model validation. Aluminum wrought alloys are usually subjected to heat treatment which includes quenching after solution treatment to improve aging responses and mechanical properties. Rapid quenching can lead to high residual stress and severe distortion which significantly affect dimension stability, functionality and particularly performance of the product. A finite element based approach was developed by coupling a nodal-based transient heat transfer algorithm with material thermo-viscoplastic constitutive model, to model residual stress and distortion during heat treatment for robust product design and durability assurance. The comparison shows that hole-drilling residual stress measurements provide more accurate and reliable results than X-ray diffraction for this particular part and material. A good agreement between residual stress measurement and FEA prediction has demonstrated that the integrated residual stress model is robust in predicting residual stresses and optimizing heat treatment of aluminum wrought alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.