Abstract
Layered multi-material ceramics are natural candidates for modern engineering applications due to their attractive mechanical properties. Residual stresses caused, for example, by a thermal mismatch during the processing of these materials can significantly affect their mechanical properties. In this work, Raman investigations were performed to estimate these residual stresses in layered reaction-bonded silicon carbide (RBSC) and reaction-bonded boron carbide (RBBC) composites fabricated by robocasting. The Raman measurements show that the residual stress in the silicon phase of RBSC and RBBC composites has a different sign, which can explain the crack formation that occurred after Si infiltration. To adjust the stresses and prevent this cracking, a new paste composition was investigated. SEM micrographs and Raman measurements showed that almost crack-free layered composites with similar stresses in the different layers could be realized. In addition, well-known analytical approaches were used to calculate these residual stresses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.