Abstract

Nitriding is a well-established thermochemical surface treatment of carbon micro-alloyed steels aiming enhancing surface properties such as fatigue, wear and corrosion resistances. The idea is taking benefits from the high hardening level due to a fine nitride precipitation and also the compressive residual stress state. Due to some complex interactions of phenomena during nitriding, the last has not been completely explained yet. When interest is focused on stress depth gradient and time evolution, difficulties find origins in pronounced heterogeneities whether it is the chemical gradient due to nitrogen diffusion, the resulting gradient of microstructure or the gradient of volumetric misfits. Relaxation of residual stresses is so usually described using a thermally controlled creep phenomenon due to the couple of diffusion and stress, but depend on phenomenological descriptions. A key point is also disregard that is the diffusion of carbon and its redistribution across the nitrided surface during the treatment. Based on experimental characterizations of model carbon iron-based alloys, the role of phase transformations, especially carbides, is explored in order to give better understandings of the residual stress development during nitriding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.