Abstract

On-line residual stress assessment in turning of Inconel 718 was carried out through multiple sensor monitoring based on cutting force, acoustic emission and vibration signals acquisition and analysis. The detected sensor signals were processed by the wavelet packet transform technique to extract statistical features from the packet coefficients for the construction of wavelet feature vectors. The latter were used for sensor fusion pattern recognition through neural network data processing grounded on X-ray diffraction residual stress measurements on the turned part surface. The scope of the sensory data fusion approach was to achieve a robust scheme for multi-sensor monitoring decision making on machined surface integrity in terms of residual stress level acceptability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.