Abstract
Membranes supported by posts are used as vibrating elements of capacitive micromachined ultrasonic transducers (CMUTs). The residual stress built up during the fabrication process determines the transducer properties such as resonance frequency, collapse voltage, and gap distance. Hence, it is important to evaluate and control the stress in thin film CMUT membranes. The residual stress in the membrane causes significant vertical displacements at the center of the membrane. The stress bends the membrane posts, and the slope at the membrane edges result in amplified displacement at the center by the radius of the membrane. By measuring the center displacement, it is possible to determine the stress provided that Young's modulus of the thin film is known accurately. Usually, in thin film structures Young's modulus differs from that of bulk materials and it depends on thin film deposition technique. In this paper, we propose a novel technique for the measurement of stress and Young's modulus of CMUT membranes. The technique depends on the measurement of membrane deflection and resonance frequency. We modeled the stress and Young's modulus dependence of membrane deflection and resonance frequency using finite element analysis. We used an atomic force microscope (AFM) to measure the membrane deflection and a laser interferometer to determine the resonance frequency of the membrane. The technique is tested on a CMUT membrane. We found that our LPCVD deposition technique yields residual stress of around 100 MPa and Young's modulus of around 300 GPa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.