Abstract

The Ni3Al intermetallic compound is of great interest because of its oxidation, corrosion-resistance, and high melting point. The low-temperature hot press + thermal diffusion process method is a technique that uses the thermal reactive diffusions between the elements that compose the intermetallic compound. In this method the powder mixture is heated and be able to generate the diffusions of the powder elements by keeping the heating temperature comparatively lower temperature with other technique. The authors evaluated the preparation conditions and joining quality in Ni3Al coating layer of particular interest is the residual stress due to the different mechanical properties of the coating and the substrate and its effect on the interface joining quality. It is known that residual stresses were generated by the difference in the coefficient of thermal expansion (CTE) of coating and substrate during cooling process. Such a residual stress caused by the differences of mechanical properties has strong influence on composite material strength. X-ray stress measurement techniques has been developed for experimental determination of residual stresses. In this paper, the Ni3Al intermetallic compound was coated on spheroidal graphite cast iron and austenite stainless steel using the reactive sintering method. Wear characteristics and residual stress on these intermetallic compound layers were investigated to evaluate the effect of substrate materials on coating layer properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.