Abstract
Structural, vibrational, photoluminescence and photo electron spectroscopic properties of rf magnetron sputtered ZnO films grown on unheated glass substrates are discussed. Variations in the c-axis orientation, average crystallite size, residual stress, and presence of disoriented grains, with varying oxygen content (40%–100%) during film growth are found to correlate with variation in the E2(high) and A1(LO) modes of the Raman spectra. Room temperature photoluminescence (RTPL) spectra exhibit a characteristic splitting in the near-band-edge emission (NBE) with three emission peaks (around 355, 386 and 395 nm) under an excitation wavelength of 290 nm. The blue emission (443–455 nm) is significantly controlled by oxygen vacancies and seen in films grown under 80% oxygen content. Quenching of NBE emission, for films prepared under oxygen rich ambient, is caused by the increased non-radiative recombination centers owing to reduced size of ZnO nano-crystallites. The shifts in the optical band gap of films grown under different oxygen content supplement the observed changes in the nano-crystallite size and luminescence properties. X-ray photoelectron spectroscopy confirms the fractional changes in the oxygen vacancy content in films deposited under different oxygen content in the sputtering gas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.