Abstract

Neutron diffraction measurements were performed on steel encapsulated metal matrix composites (MMCs) in order to quantify bulk residual stresses. A coefficient of thermal expansion (CTE) mismatch induced residual compressive stress method is utilized as a means of improving the ductility of the MMCs and overall efficiency of several macro hybridized materials systems. Systems consisting of an A36, 304 stainless steel, or Nitronic® 50 stainless steel shell filled with an Al-SiC or Al-Al2O3 metal matrix composite are evaluated in this work. Upon cooling from processing temperatures residual strains are generated due to a CTE mismatch between each of the phases: steel, aluminum, and reinforcement. The analysis shows variation in the measured strain and stress results due to outer steel thickness, difference in CTE between materials, and relative position within the composite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call