Abstract
Residual stresses are generated in float glass at the time of manufacturing due to thermal gradients created during the cooling process. The quantification of these residual stresses is important in glass industries as they affect their cutting quality. Photoelasticity can be used for residual stress analysis of glasses, as glass exhibits stress‐induced birefringence. In this study, a methodology involving carrier fringes in conjunction with digital photoelasticity is used to quantify the residual stress in float glass. The results are verified by six‐step phase‐shifting technique (a subset of ten‐step phase‐shifting method) using an automatic polariscope. Finally, to demonstrate the utility of the proposed method, the residual stress is measured in float glasses of different thicknesses. A method for approximate estimation of residual stress which does not require sophisticated digital image acquisition and processing systems is also reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.