Abstract

In this paper, an analysis on the residual stress evolution of cold-sprayed copper coatings on Cu and Al substrates was performed. To investigate the influences of particle velocity, temperature and material combination on the final residual stresses, an integrated frame of calculation was proposed based on the simulation results obtained from the developed thermo-mechanically coupled Eulerian model. In a single Cu splat, generally speaking, the maximum residual stress and plastic deformation are concentrated at the outside contact zone rather than at the center point of initial impact. The action of friction shear between the particle and substrate during impacting should be considered as one of the essential factors on the final residual stress. And the states of residual stresses can vary significantly depending on the material combination, particle velocity, and temperature. In a single pass Cu coating, the residual stress fluctuates across the coating and there exists both compressive stress and tensile stress within the coating. At a certain range of impacting velocities, the resultant residual stresses increase with the increase of particle velocity. The present simulated results are related to the reported experiments by others, showing that the residual stress states and stress change trend are different from some of the reported results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call