Abstract

The pressure to reduce solar energy costs encourages efforts to reduce the thickness of silicon wafers. Thus, the cell bowing problem associated with the use of thin wafers has become increasingly important, as it can lead to the cracking of cells and thus to high yield losses. In this paper, a systematic approach for simulating the cell bowing induced by the firing process is presented. This approach consists of three processes: (1) the material properties are determined using a nanoidentation test; (2) the thicknesses of aluminum (Al) paste and silver (Ag) busbars and fingers are measured using scanning electron microscopy; (3) non-linear finite element analysis (FEA) is used for simulating the cell bowing induced by the firing process. As a result, the bowing obtained using FEA simulation agrees better with the experimental data than that using the bowing calculations suggested in literature. In addition, the total in-plane residual stress state in the wafer/cell due to the firing process can be determined using the FEA simulation. A detailed analysis of the firing-induced stress state in single crystalline silicon (sc-Si), cast, and edge-defined film-fed growth (EFG) multi-crystalline silicon wafers of different thicknesses is presented. Based on this analysis, a simple residual stress calculation is developed to estimate the maximum in-plane principal stress in the wafers. It is also proposed that the metallization pattern, Ag busbars and fingers screen printed on the front of a solar cell, can be designed using this approach. A practical case of a 3-busbar Si solar cell is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.