Abstract

Tests are reported on twenty-six concrete filled steel tube of rectangular section after being exposed to high temperatures, to investigate the influence of temperature on section capacity and load-deformation behavior. The main parameter varied is temperature, from 20°C to 900°C. A mechanics model is described in this paper for the behaviour of concrete-filled RHS (Rectangular Hollow Section) columns after exposed to high temperatures, and is a development of the analysis (Han et al, 2001a) used when only normal temperatures apply. The predicted load versus axial strain relationship is in good agreement with stub column test results. Simplified models are derived for the section capacities and the modulus of elasticity of the composite sections. It was found in general, that the higher the exposure temperature, the higher the loss of section capacities and elastic modulus which resulted. The tests have shown the importance of the influence of high temperatures on the performance of concrete filled steel tubes. The work in this paper provides a basis for further theoretical study on the residual strength of concrete filled steel tubular columns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.