Abstract
The purpose of this study is to develop an approach to generate reasonably conservative estimations of the residual strength of a composite material with barely visible impact damage (BVID) without directly modeling the dynamic impact process. During an impact, a portion of the impactor kinetic energy transforms into the formation of a microcrack system in the matrix, fiber, and interface, which can be interpreted as material damage. Using the estimated value of energy transformed into damage as a constraint in the mathematical formulation, the optimization algorithm computes the damage distribution to minimize the residual stiffness of the structure as an objective function, which is closely related to the residual strength. Thus, this procedure gives “the worst” possible damage distribution within the material as a conservative estimation of the residual strength of the composite part. The proposed approach is promising for establishing the allowable BVID with fewer experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.