Abstract

This paper presents the results of residual strength analyses on stiffened and un-stiffened panels using the STructural Analysis of General Shells (STAGS) finite-element shell code and the critical crack-tip-opening angle (CTOA) fracture criterion. Previous analyses of wide, flat panels have shown that high-constraint conditions around a crack front must be modeled in order for the critical CTOA fracture criterion to predict wide panel failures from small laboratory tests. Thus, the STAGS code with the “plane-strain” core option was used in all analyses. In the present study, the critical CTOA ( Ψ c) value and the plane-strain core height were determined from a fit to the experimental load-against-crack-extension results from a series of middle-crack tension specimens (76–1016 mm wide) tested with anti-buckling guides. In the residual strength analyses of the 305-mm wide stiffened panels with a single crack, modeling of the sheet, stiffeners, rivet flexibility and buckling were based on methods and criteria, like that currently used in industry. STAGS and the CTOA criterion were used to predict load-against-crack extension for the single stiffened panels for both intact and cut stiffeners. Analyses were able to predict stable crack growth and residual strength of the single stiffened panels within about ±5% of the test failure loads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.