Abstract

Nb3Sn magnets are presently built for the HL-LHC accelerator upgrade and are developed for the Future Circular Collider study. The knowledge of the Nb3Sn strain state distribution in these magnets is required in order to predict their ultimate performance limit. We have measured the Nb3Sn residual strain distribution in an 11 T dipole accelerator magnet coil. Ambient temperature Nb3Sn strain maps across 11 T dipole coil cross sections were acquired by means of fast high energy synchrotron x-ray diffraction. Using complementary neutron diffraction measurements the Nb3Sn residual strain and stress was measured in the four largest conductor blocks of a massive 11 T dipole coil segment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.