Abstract
Previous deep learning studies on Face Anti-Spoofing (FAS) systems have exploited many aspects of spatial data for face anti-spoofing detection, but few have used end-to-end spatiotemporal approaches to solving FAS problems. This paper aims to provide new perspectives for end-to-end spatiotemporal systems to deal with FAS problems, using five residual spatiotemporal convolutional models. This work analyzes and detects which network is the most appropriate for identifying spoofing on video-based identification systems. These five models were adapted to specific features of the FAS problem and its performance (accuracy and computational cost) were tested with OULU-NPU and SiW datasets. In addition, a cross-dataset validation was carried out. The experimentation shows the strengths and weaknesses of each model against the dependency on the temporal dimension, data initialization and different FAS environment conditions. According to experimentation, residual networks outperform the state-of-the-art, being the model based on decomposing spatial and temporal flow the best option.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Visual Communication and Image Representation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.