Abstract

With the rapid development of deep learning, the convolutional neural networks (CNNs) have been widely used in hyperspectral image classification (HSIC) and achieved excellent performance. However, CNNs reuse the same kernel weights over different locations, resulting in the insufficient capability of capturing diversity spatial interactions. Moreover, CNNs usually require a large amount of training samples to optimize the learnable parameters. When training samples are limited, the classification performance of CNN tends to drop off a cliff. To tackle the aforementioned issues, a novel residual spatial attention kernel generation network (RSAKGN) is proposed for HSIC. First, a spatial attention kernel generation module (SAKGM) is built to extract discriminative semantic features, which can dynamically calculate the attention weights to generate specific spatial attention kernels over different locations. Then, we combine the SAKGM with residual learning framework by embedding the SAKGM into a bottleneck residual block to obtain the residual spatial attention block (RSAB). The RSAKGN is constructed by stacking several RSABs. Experimental results on three public HSI datasets demonstrate that the proposed RSAKGN method outperforms several state-of-the-arts with small sample size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.