Abstract
The present study investigates the chemical evolution of the burned gases in a first-stage nozzle operated under high inlet temperature and pressure conditions as they are foreseen for next-generation high-efficiency gas turbine machinery. Coupled aerothermochemical simulations are performed up to the extreme case of stoichiometric combustion without ulterior dilution. The intent is to provide an estimation of possible consequences arising from the residual reactivity of gases downstream from the combustor. These consequences might affect the future design of the expansion path in order to render nonstationary chemistry compatible with aerodynamics, energetics, and environmental aspects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.