Abstract

PurposeThis paper attempted to study the alkali-activated (AA) binder consisting of 94% of ground granulated blast furnace slag (GGBFS) and 6% of blended powder of alkali metal hydroxide and metal sulfate, which acted as an activator.Design/methodology/approachSeveral concrete specimens (cubes, cylinders and prisms), which were casted using AA binders, were further tested for mechanical properties after exposure to elevated temperatures of 200 °C, 400 °C, 600 °C and 800 °C. Additionally, to understand the structural behavior in uniaxial compressive load, reinforced concrete short columns were cast, cured and tested at ambient temperature as well as after exposure to 300 °C, 600 °C and 900 °C, to know the residual strength after exposure to elevated temperature.FindingsThe findings for the residual strength of alkali-activated slag binder concrete (AASBC) indicated a substantial agreement with the results obtained for the residual strength of Portland slag cement (PSC) concrete, thereby showing the effectiveness of binder when used as a replacement of cement.Originality/valueThe study clearly indicates that the binder developed is an effective approach for the 100% replacement of cement in the concrete.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.