Abstract

This paper presents an experimental program evaluating the residual behavior of carbon fiber reinforced polymer (CFRP)-steel interface bonded with a silyl-modified polymer (SMP) adhesive when subjected to thermally-induced stress states. A total of 40 specimens are prepared and exposed to elevated temperatures from 25°C to 200°C. According to test results, interfacial capacity is well maintained up to a temperature of 100°C; however, thermal hysteresis takes place beyond 100°C. Exposure temperatures higher than 175°C result in a phase-transition of the adhesive morphology during heating and influence the adhesion characteristics of the bonding agent. Geometric discontinuities along the interface affect CFRP-strain development and a shear-lag mechanism is noticed, which is virtually independent of the degree of thermal exposure. Fiber disintegration is the primary failure mode of the interface up to 150°C, including intricate local fiber dislocation and partial CFRP pull-out. The specimens exposed to temperatures higher than 175°C revealed a simple CFRP-debonding failure mode due to the thermal damage of the SMP. A probabilistic approach is taken to complement the experimental observation. The probability of the CFRP-steel interface tested is found to be normally distributed. The Bayesian updating method probabilistically infers the thermal characteristics of the interface with emphasis on temperature-dependent interfacial fracture energy. Design properties are proposed for practical application of the CFRP-steel interface with SMP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.