Abstract

The residual N contribution from faba bean (Vicia faba L.), pea (Pisum sativum L.) and white lupin (Lupinus albus L.) to microbial biomass and subsequent wheat (Triticum aestivum L.) and oilseed rape (Brassica napus L.) was studied in a greenhouse experiment. The grain legumes were 15N labelled in situ with a stem feeding method before incorporated into the soil, which enables the determination of N rhizodeposition. Wheat and rape were subsequently grown on the soil containing the grain legume residues (incl. 15N-labelled rhizodeposits) and were harvested either twice at flowering and at maturity or once at maturity, respectively. The average total N uptake of the subsequent crops was influenced by the legume used as precrop and was determined by the residue N input and the N2-fixation capacity of the legume species. The succeeding crops recovered 8.6–12.1% of the residue N at maturity. Similar patterns were found for the microbial biomass, which recovered 8.2–10.6% of the residue N. Wheat and rape recovered about the same amount of residue N. The absolute contribution of soil derived N to the subsequent crops was similar in all treatments and averaged 149 mg N pot−1 at maturity. At flowering 17–23% of the residue derived N was recovered in the subsequent wheat and in the microbial biomass; 70% of the residue N was recovered in the microbial biomass in the flowering stage and decreased to about 50% at maturity. In contrast, the recovery in wheat and rape constituted only 30% at flowering and increased to 50% at maturity in all treatments, indicating that the residual N uptake by the subsequent wheat was apparently supplied by mobilisation of residue N temporarily immobilised in the microbial biomass.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call