Abstract
We propose a novel method to estimate the first- and second-order statistics of the residual misregistration noise (RMR), which severely affects the performance of anomalous change detection techniques. Depending on the specific distribution of the RMR, the estimates allow for precisely defining the size of the uncertainty window, which is crucial when dealing with misregistration noise, as in the local coregistration adjustment approach. The technique is based on a sequential strategy that exploits the well-known scale-invariant feature transform (SIFT) algorithm cascaded with the minimum covariance determinant algorithm. The SIFT procedure was originally developed to work on gray-level images. The proposed method adapts the SIFT procedure to hyperspectral images so as to exploit the complementary information content of the numerous spectral channels, further improving the robustness of the outliers filtering by means of a highly robust estimator of multivariate location. The approach has been tested on different real hyperspectral datasets with very high spatial resolution. The analysis highlighted the effectiveness of the proposed strategy, providing reliable and very accurate estimation of the RMR statistics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.